
Identifying cold objects in the IBM JVM

Motivation

Introduction: in some specific Java application, there may be a number

of objects which are alive but infrequently accessed. Those objects

persist in heap memory, consuming limited internal memory resource

and, even if paged out of physical memory, are frequently touched as

they are traversed by the garbage collection. We refer to these objects

which are marked and inactive as “cold objects”.

Background

Heap: All Java objects are stored on the heap.

Region age: increases as a region survives successive garbage

collection cycles.

Region density: the proportion of the region occupied by objects.

Pinned region: an older, dense region that has been selected for

exclusion from copy-forward and compaction operations.

The Java VM is instrumented to track activity at the object level within

pinned regions, enabling cold objects to be identified over time. Once

activity has stabilized within a pinned region, the cold objects contained

in the region can be harvested, that is, they can be moved into a cold

region. Since cold regions are excluded from normal garbage collection

operations and infrequently accessed by the mutator, they can be

swapped out to a backing store, freeing physical memory for more active

regions.

Solutions:

The methods: track objects activity within pinned regions by walking

mutator stacks to collect active object references; objects that are marked

but inactive are cold.

The process is as follows:

 Select dense, maximally aged regions for pinning.

 Walk mutator thread stacks frequently to collect active references.

 Collect cold objects from pinned regions that have received no new

active references for a pre-set period of time.

Experimental results

Using the SPECjvm2008 compiler.compiler and derby benchmarks, a

significant number of cold objects were identified. The runtime overhead

for activity tracking ranged from 5-6%. Each benchmark was run for 1

hour.

Conclusion: the results show the method of identifying cold objects is

feasible. Future work will determine whether the reduction in memory

pressure is a worthwhile benefit given the sampling overhead.

Baoguo Zhou, Gerhard W. Dueck
University of New Brunswick, IBM Canada

Faculty of Computer Science

Email: barry.zhou@unb.ca, gdueck@unb.ca

Ideas: Identify cold objects and move them to cold

regions that are excluded from normal garbage

collection operations (mark, sweep, compact, copy-

forward).

Region: when Java virtual machine is running

the balanced garbage collector, the heap is

divided into multiple regions.

